2018-7-26 14:54:34
来源:东方网 作者:夏毓婕 选稿:刘晓晶
东方网记者夏毓婕7月26日报道:污染城市大气中的纳米微细粒子是怎样从不可胜数的空气分子形成的?记者从复旦大学获悉,历经多年实验观测分析,复旦大学环境科学与工程系王琳教授团队首次发现并证实了我国典型城市大气中的硫酸-二甲胺-水三元成核现象,揭秘其形成机制,这一探索,为我国大气颗粒物污染防治政策的制定提供了新的科学证据。
在此之前,污染城市大气中的大气新粒子形成事件的化学与物理机制一直是一个未解之谜。从2014年3月到2016年2月,王琳团队针对这一难题在上海开展了长达两年的连续大气观测。据透露,2016年3月到2017年7月,研究人员和来自芬兰赫尔辛基大学的合作者一起,完成了对收集来的海量数据的系统整理和深入分析。
对于他们的发现,王琳给出了一个比方:“这相当于我们从133倍于地球人口数的气体分子中找出了最关键的那2个,一个是硫酸分子,另一个是二甲胺分子,它们碰到一起,就可能发生大气新粒子形成事件了。”
在大众观念中,工厂和汽车的尾气排放是造成PM2.5颗粒物污染的主要原因之一。王琳说:“这是由人类活动或者自然活动所带来的大气颗粒物直接排放,被称为‘一次排放’。”王琳介绍,除了“一次排放”,在空气当中,时常发生着的,还有颗粒物的“二次形成”,且过程更加复杂。
王琳认为,在中国典型的城市环境中,除了加强对污染物一次排放的监测和管理,对污染物的二次形成也应予以同样程度的关注和重视。王琳说,“‘二次形成’让大气中的颗粒物变得更‘重’、更‘多’。”
研究结果表明,在中国典型城市上海大气新粒子的形成过程中,一个气体硫酸分子和一个二甲胺分子随机碰撞,通过氢键形成稳定的分子簇,分子簇通过与其他硫酸分子、二甲胺分子或其他硫酸-二甲胺团簇的碰撞继续生长;一定尺寸以后,其他物种(例如极低挥发性有机化合物)开始加入这个过程,并最终形成大气新粒子。
王琳指出,得益于此项研究中提出的化学机制,参与大气新粒子形成过程中的关键化学物种得到更有针对性的控制,则有望有效地降低空气中颗粒物的数量浓度,减轻中国的大气颗粒物污染。另外,从更大的维度来看,将这一机制运用于全球气候模式中,能更好地模拟全球大气颗粒物乃至云凝结核的数目,更好地理解整个地球的气候变化趋势。
据介绍,该研究成果有望解释高污染城市大气中的大气新粒子形成事件,从而为中国的大气颗粒物污染尤其是大气颗粒物的二次形成提供潜在的防治措施,也有助于更好地理解我国的雾霾污染和更大尺度上的全球气候变化。